Extensions 1→N→G→Q→1 with N=C58 and Q=C22

Direct product G=N×Q with N=C58 and Q=C22
dρLabelID
C22×C58232C2^2xC58232,14

Semidirect products G=N:Q with N=C58 and Q=C22
extensionφ:Q→Aut NdρLabelID
C58⋊C22 = C22×D29φ: C22/C2C2 ⊆ Aut C58116C58:C2^2232,13

Non-split extensions G=N.Q with N=C58 and Q=C22
extensionφ:Q→Aut NdρLabelID
C58.1C22 = Dic58φ: C22/C2C2 ⊆ Aut C582322-C58.1C2^2232,4
C58.2C22 = C4×D29φ: C22/C2C2 ⊆ Aut C581162C58.2C2^2232,5
C58.3C22 = D116φ: C22/C2C2 ⊆ Aut C581162+C58.3C2^2232,6
C58.4C22 = C2×Dic29φ: C22/C2C2 ⊆ Aut C58232C58.4C2^2232,7
C58.5C22 = C29⋊D4φ: C22/C2C2 ⊆ Aut C581162C58.5C2^2232,8
C58.6C22 = D4×C29central extension (φ=1)1162C58.6C2^2232,10
C58.7C22 = Q8×C29central extension (φ=1)2322C58.7C2^2232,11

׿
×
𝔽